PyTorch 使用指定的 GPU 的方法

已关闭留言

好久没写 PyTorch 了,记录一下在 PyTorch 中如何让程序使用指定的 GPU,这样能有效的避免多人共用一台服务器的时候互相抢占 GPU 资源。如果不指定,PyTorch 默认会占用所有 GPU,这样是非常不友好的,建议大家都在写代码的时候指定一下 GPU。

文章目录
隐藏
一、PyTorch 指定 GPU 的方法
二、参考文献和结语

一、PyTorch 指定 GPU 的方法

下面的内容转载自 cnblogs,原文链接在下方给出,觉得写得很完善了。

PyTorch 默认使用从 0 开始的 GPU,如果 GPU 0 正在运行程序,需要指定其他 GPU。

有如下两种方法来指定需要使用的 GPU。

1. 类似 TensorFlow 指定 GPU 的方式,使用 CUDA_VISIBLE_DEVICES

1.1 直接终端中设定:

CUDA_VISIBLE_DEVICES=1 python my_script.py

1.2 Python 代码中设定:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

见网址:http://www.cnblogs.com/darkknightzh/p/6591923.html

2. 使用函数 set_device

import torch
torch.cuda.set_device(id)

该函数见 pytorch-master\torch\cuda\__init__.py

不过官方建议使用 CUDA_VISIBLE_DEVICES,不建议使用 set_device 函数。

二、参考文献和结语

原文链接:https://www.cnblogs.com/darkknightzh/p/6836568.html

PyTorch 还是非常好用的,老唐本人一直用的都是 PyTorch,推荐大家使用。PyTorch 官网:https://pytorch.org